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A. Related Work1

The existing continual learning methods can be roughly divided into five2

categories: rehearsal-based, architecture-based, algorithm-based, regularization-3

based and distillation-based approaches.4

Rehearsal-based approach commonly relies on storing data of previous5

tasks in a memory buffer, which is then replayed when learning a new task to6

maintain network performance on previous tasks [1, 2]. Some works utilize7

data from previous tasks to formulate a constrained optimization problem8

to avoid the increases of training losses on previous tasks [3, 4, 5]. Gu et9

al. [6] focus on the setting where the training data is accessed only once10

during the training phase. They propose a sample selection strategy that11

selects stored samples whose network parameter gradients are most inter-12

fered by new incoming samples. However, most of these works suffer from13

class imbalance [7] between classes from previous and new tasks. Addition-14
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ally, storing data of previous tasks introduces privacy and security concerns.15

An alternative way is generating synthetic data of previous tasks based on16

generative models [8, 9], whose performance depends on the quality of syn-17

thetic data. Wei et al. [10] further apply knowledge distillation to mitigate18

catastrophic forgetting of the generator for tackling a new problem named19

incremental zero-shot learning, where the network incrementally learns the20

knowledge of new classes and will be tested on all previously learned classes21

and unseen classes. Nonetheless, generating high-quality synthetic data re-22

mains a challenge.23

Architecture-based approach concentrates on dynamically customiz-24

ing the network’s structure for each task, such as expanding [11], pruning [12]25

or masking [13] the neural connections, to alleviate catastrophic forgetting.26

For example, Packnet [12] prunes the network and dedicates a specific sub-27

part of the network for each task. Piggyback [13] learns masks of network28

parameters to identify the task-specific part of the network. Learn-to-Grow29

[11] employs architecture search to find the optimal structure for each task.30

DRT [14] disentangles the latent features into class-disentangled and task-31

disentangled features by two branches of networks. In contrast to them, our32

method avoids modifying network architecture for each task, but designs a33

novel regularizer in network training loss, which is easy to implement.34

Algorithm-based approach concentrates on designing a network pa-35

rameter update rule on the new task which alleviates the performance dete-36

rioration on previous tasks. For example, OWM [15] projects the gradient37

obtained at each training step into an orthogonal space of the space spanned38

by input features of all network layers, where the projection matrix is up-39
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dated by recursive least squares. Adam-NSCL [16] considers the network40

parameter update as the projection of gradient into the approximate null41

space of uncentered feature covariance based on theoretical analysis. GPM42

[17] forces the network parameter update to lie in the orthogonal space of43

the space spanned by input features, which is dependent on storing the ba-44

sis of the complement to orthogonal space obtained by employing singular45

value decomposition on partial input features of previous tasks. However, to46

obtain the network parameter update in each step, these works [15, 16, 17]47

need to store the projection matrix or basis of subspace, where the memory48

usages of them are larger than ours.49

Regularization-based approach penalizes the variations of network50

parameters to preserve the performance on previous tasks, where each net-51

work parameter is associated with an importance weight. Previous works52

focus on designing the importance weight in different ways [18, 19, 20, 21].53

For example, MAS [19] aims to consider the sensitivity of the output function,54

and finally implements this by estimating the sensitivity of the norm of pre-55

dicted output w.r.t. the parameters to measure the importance weight. In-56

spired by [19], MUC-MAS [21] proposes to integrate an ensemble of auxiliary57

classifiers to estimate the importance weight, where the auxiliary classifiers58

are trained on out-of-distribution data irrelevant to the current task. How-59

ever, these works implicitly assume that the network parameters are inde-60

pendent without considering the impact of the correlation among parameters61

on the network performance, while our method takes this into consideration.62

Distillation-based approach is inspired by knowledge distillation [22].63

To preserve the performance on previous tasks in continual learning, a distil-64
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lation term is utilized to penalize the variations of outputs between teacher65

and student networks, where the teacher and student networks are respec-66

tively set as the network learned from the previous tasks and the network67

being trained on the current task. Ideally, the data associated with the dis-68

tillation term should be the original data of previous tasks. However, the69

full datasets of previous tasks are inaccessible in continual learning, thus70

existing works mainly focus on how to substitute the datasets of previous71

tasks [23, 24, 25]. For example, methods in [24, 26] employ the training data72

of the current task for knowledge distillation. iCaRL [23] stores a few sam-73

ples of previous tasks as a coreset for knowledge distillation. Besides using74

coreset, the method in [25] additionally leverages a large stream of unlabeled75

data in the wild which is assumed to be available at any time for knowledge76

distillation. Commonly, the dataset they adopted for knowledge distillation77

may fail to reflect the knowledge of the full original datasets of previous78

tasks, as a result of which, these methods may not well distill full knowledge79

of the previous tasks. Moreover, the teacher networks need to be saved in80

their methods. Different from them, we make use of the whole knowledge81

of datasets of previous tasks encoded by gradients for knowledge distillation,82

and we do not need to store teacher networks.83

B. Proof of Theorem 184

In this section, we begin by introducing the notation used in the proof,85

followed by presenting Lemma 1 which forms the basis of proof for Theorem 1.86

Then we recall Theorem 1 and provide its proof.87

Notation. To mitigate catastrophic forgetting, we employ a distillation88
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loss penalizing the output variations between teacher and student networks89

on previous task data Xi of task Ti, i.e., minw∥f(Xi, w)−f(Xi, w
∗
i )∥22, where90

f(·, w∗
i ) is the teacher network and f(·, w) is the student network. Since the91

previous task dataXi are not available when learning task Tt, we approximate92

f(Xi, w) with its first-order Taylor expansion at w = w∗
i , i.e., f(Xi, w) ≈93

f(Xi, w
∗
i )+G⊤

i (w−w∗
i ), where Gi =

∂f(Xi,w
∗
i )

∂w∗
i
∈ R|w|×C with |w| and C as the94

dimension of w and the number of classes respectively. The gradients Gi are95

further compressed and recovered for memory efficiency, and the recovered96

gradients are denoted as G̃i.97

For clarity in notation, we omit the subscript i denoting the task index of98

gradients Gi. The gradient matrix G ∈ R|w|×C on task Ti is the concatenation99

of layer-wise gradient matrix Gl ∈ R|wl|×C such that |w| =
∑L

l=1

∣∣wl
∣∣ with100

L denoting the number of layers of the network. We additionally introduce101

a notation Ḡ ∈ R|w|×C as the concatenation of matrix EXP (Ḡl) ∈ R|wl|×C
102

(l = 1, . . . , L) for proving Lemma 1, where EXP (·) denotes the operation103

that copies each element of the input object to the elements corresponding to104

the convolutional kernel. For the l-th convolutional layer of the network with105

nl
out 3D convolutional kernels of size nl

in × kl × kl, the gradients of the l-th106

layer Gl ∈ R|wl|×C are gradients of C elements of network output w.r.t. the107

j-th convolutional kernel, where Gl =
[
g1

⊤, . . . ,gnl
out

⊤
]⊤

, gj ∈ R(nl
in×kl×kl)×C

108

(j = 1, . . . , nl
out) and

∣∣wl
∣∣ = nl

out × nl
in × kl × kl.109

Recall the proposed compression approach, we first average the gradients110

of each convolutional kernel with size nl
in×kl×kl, which results in a compact111

matrix Ḡl ∈ Rnl
out×C . Specifically, we obtain Ḡl by Ḡl =

[
ḡ⊤
1 , . . . , ḡ

⊤
nl
out

]⊤
,112

where ḡj = 1
nl
in×kl×kl

(1⊤gj)
⊤ ∈ RC and 1 ∈ Rnl

in×kl×kl is a column vector113
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with its all elements as 1. We then apply SVD to the compact matrix Ḡl ∈114

Rnl
out×C and obtain its SVD decompositions, i.e., U l ∈ Rnl

out×r, V l ∈ RC×r
115

and Λl ∈ Rr×r (r < C), which are used to approximate the compact matrix116

Ḡl. The resulting approximate compact matrix is denoted as G̃l ∈ Rnl
out×C ,117

which is obtained by G̃l = U lΛlV l⊤.118

We now introduce Lemma 1 which analyzes the approximation error be-119

tween the gradients Gi and the recovered gradients G̃i. Lemma 1 forms the120

basis of the proof of Theorem 1.121

Lemma 1. Given the gradients G of the network output f(Xi, w
∗
i ) w.r.t.122

the learned network parameters w∗
i , i.e., G =

∂f(Xi,w
∗
i )

∂w∗
i

, and the recovered123

gradients G̃, then we have the following bound on the error between G and124

G̃:125

∥G−G̃∥22 ≤
L∑
l=1

nl
out∑

j=1

C∑
c=1

(nl
in × kl × kl)× σ2

j,c

+ (nl
in × kl × kl)(

C−r∑
j=r+1

s2j)

 ,

(1)

where σ2
j,c is the variance of the gradients of the c-th element of the net-126

work output f(Xi, w
∗
i ) w.r.t. the j-th convolutional kernel, r is the number127

of selected singular values, sj represents the j-th singular value that is not128

selected.129

Proof.

∥G− G̃∥22 = ∥G− Ḡ+ Ḡ− G̃∥22

≤ ∥G− Ḡ∥22 + ∥Ḡ− G̃∥22
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=
L∑
l=1

[
∥Gl − EXP (Ḡl)∥22 + ∥EXP (Ḡl)− EXP (G̃l)∥22

]

=
L∑
l=1

nl
out∑

j=1

∥gj − EXP (ḡj)∥22

+ (nl
in × kl × kl)∥Ḡl − G̃l∥22


=

L∑
l=1

nl
out∑

j=1

C∑
c=1

(nl
in × kl × kl)× σ2

j,c

+ (nl
in × kl × kl)(

C−r∑
j=r+1

s2j)

 . (2)

130

We now recall Theorem 1 and provide its proof. The proof of Theorem 1131

is based on the conclusion of Lemma 1.132

Theorem 1 (Bound on Relative Approximation Error). Given the network133

output f(Xi, w) on previous task data Xi, we approximate it by f(Xi, w) ≈134

f(Xi, w
∗
i ) + G̃⊤

i (w − w∗
i ), where G̃i is an approximation of the gradients Gi135

of f(Xi, w
∗
i ) w.r.t. w∗

i , then we have the following bound on relative approx-136

imation error between f(Xi, w) and f(Xi, w
∗
i ) + G̃⊤

i (w − w∗
i ):137

∥f(Xi, w)− f(Xi, w
∗
i )− G̃⊤

i (w − w∗
i )∥22

∥f(Xi, w∗
i )∥22

≤ e1 + e2 (3)

with

e1 =
∥f(Xi, w)− f(Xi, w

∗
i )−G⊤

i (w − w∗
i )∥22

∥f(Xi, w∗
i )∥22

, (4)

e2 =
∥(w − w∗

i )∥22α2
∑L

l=1

∑nl
out

j=1

∑C
c=1(n

l
in × kl × kl)× σ2

j,c

∥f(Xi, w∗
i )∥22

+
∥(w − w∗

i )∥22α2
∑L

l=1(n
l
in × kl × kl)(

∑C−r
j=r+1 s

2
j)

∥f(Xi, w∗
i )∥22

, (5)

7



where α = max({cosθ1, . . . , cosθC}) is the maximum cosine value with θc138

(c = 1, . . . , C) as the angle between the c-th column of Gi − G̃i and w − w∗
i ,139

σ2
j,c is the variance of the gradients of the c-th element of the network output140

f(Xi, w
∗
i ) w.r.t. the j-th convolutional kernel, r is the number of selected141

singular values, sj represents the j-th singular value that is not selected.142

According to Theorem 1, the bound on relative approximation error is143

determined by e1 and e2. e1 measures the relative truncation error of the144

Taylor expansion, while e2 quantifies the approximation error of compressing145

the gradients. Specifically, the first term and second term of e2 are influenced146

by our average operation and SVD respectively.147

Proof. Considering the relative approximation error
∥f(Xi,w)−f(Xi,w

∗
i )−G̃⊤

i (w−w∗
i )∥22

∥f(Xi,w∗
i )∥22

,148

we have149

∥f(Xi, w)− f(Xi, w
∗
i )− G̃⊤

i (w − w∗
i )∥22

∥f(Xi, w∗
i )∥22

=
∥f(Xi, w)− f(Xi, w

∗
i )−G⊤

i (w − w∗
i ) +G⊤

i (w − w∗
i )− G̃⊤

i (w − w∗
i )∥22

∥f(Xi, w∗
i )∥22

≤ ∥f(Xi, w)− f(Xi, w
∗
i )−G⊤

i (w − w∗
i )∥22

∥f(Xi, w∗
i )∥22

+
∥(Gi − G̃i)

⊤(w − w∗
i )∥22

∥f(Xi, w∗
i )∥22

= e1 +

∑C
c=1

[
Gi − G̃i

]2
c
(w − w∗

i )
2cos2θc

∥f(Xi, w∗
i )∥22

≤ e1 +

∑C
c=1

[
Gi − G̃i

]2
c
(w − w∗

i )
2α2

∥f(Xi, w∗
i )∥22
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= e1 +
∥(Gi − G̃i)∥22∥(w − w∗

i )∥22α2

∥f(Xi, w∗
i )∥22

,

(6)

where [·]c denotes the c-th column of the matrix, α = max({cosθ1, . . . , cosθC})150

is the maximum cosine value and θc (c = 1, . . . , C) is the angle between the151

c-th column of Gi − G̃i and w − w∗
i .152

By substituting inequality (2) in the second term of r.h.s. of inequality153

(6), we have154

∥(Gi − G̃i)∥22∥(w − w∗
i )∥22α2

∥f(Xi, w∗
i )∥22

≤ e2. (7)

Combining inequalities (6) and (7), we can conclude that

∥f(Xi, w)− f(Xi, w
∗
i )− G̃⊤

i (w − w∗
i )∥22

∥f(Xi, w∗
i )∥22

≤ e1 + e2.

155

C. Details on Compressing Gradients of BN layer156

For the batch normalization (BN) layer with n feature channels, each157

channel is equipped with an affine transformation with two parameters, i.e.,158

scaling weight and bias. Therefore, the gradients of scaling weight and bias159

at BN layer are both with the size of n×C, where C is the number of classes.160

We respectively compress the gradients of scaling weight and bias by SVD161

without using average operation.162

D. Algorithm163

9



Algorithm 1 Data-free distillation for continual learning.

Inputs: datasets {Xt, Yt} for task Tt ∈ {T1, T2, . . . }, network f(·, w) of
depth L, hyperparameter λ.
Output: learned network f(·, w∗).

1: Memory bufferM = ∅.
2: for task Tt ∈ {T1, T2, . . . } do
3: if t = 1 then
4: Initialize w randomly.
5: w∗

t ← argminw L(Ŷt(w), Yt).
6: else
7: # Reconstruction stage as illustrated in Sec.3.2
8: Take {U l

i ,Λ
l
i, V

l
i }Ll=1 fromM for i = 1, . . . , t− 1.

9: Gi = Reconstruct(U1
i ,Λ

1
i , V

1
i , . . . , U

L
i ,Λ

L
i , V

L
i ) for i = 1, . . . , t− 1.

10: Initialize w with w∗
t−1.

11: w∗
t ← argminw L(Ŷt(w), Yt) + λ

∑t−1
i=1(w

⊤GiG
⊤
i w − 2w⊤GiG

⊤
i w

∗
i ).

12: end if
13: Obtain the gradient Gt =

∂f(Xt,w∗
t )

∂w∗
t

.

14: # Compression stage as illustrated in Sec. 3.2
15: U l

t ,Λ
l
t, V

l
t = Compress(Gl

t).
16: M =M∪ {U l

t ,Λ
l
t, V

l
t }Ll=1.

17: end for

In this Appendix, we summarize the algorithm for the proposed DFD in164

Alg. 1. Given a task sequence {T1, T2, . . . }, The basic pipeline of DFD is it-165

eratively optimizing problem (5) of the manuscript to acquire new knowledge166

while reserving the performance on previous tasks.167

Concretely, to train the network acquiring knowledge of the first task T1,168

we minimize the cross-entropy loss to obtain the learned network parameter169

w∗
t as illustrated in line 9. When training the network on task Tt (t > 1), we170

first recover the gradients as described in lines 13 to 14. Then we optimize171

problem (5) of the manuscript as described in line 18. After obtaining the172

learned network parameters for task Tt, we update the memory buffer as173
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described in line 26 following the compression stage in line 25.174

E. Details on the Hyperparameters175

The setting of hyperparameters of our method is listed in Table 1, where176

“lr”, “wd” and “bs” denote the initial learning rate, weight decay and batch177

size respectively. The network is trained for 80 epochs in total for all experi-178

ments. The initial learning rate decays at epochs 30 and 60 with a multiplier179

of 0.5 for all experiments.180

Table 1: The settings of hyperparameters of our method on all experiments.

Experiments lr wd bs λ

10-split CIFAR-100 1× 10−3 5× 10−5 32 20
20-split CIFAR-100 1× 10−4 5× 10−4 32 10
25-split TinyImageNet 5× 10−5 1× 10−5 16 50
20-split miniImageNet 5× 10−5 5× 10−5 32 20
10-split SubImageNet 1× 10−4 5× 10−5 16 200

F. Effect of r on the Bound on Relative Approximation Error181

We now study the impact of the number of stored top singular values,182

denoted by r, on the bound of the relative approximation error. According183

to Theorem 1 of the paper, r is irrelevant to e1 but affects the value of e2184

which captures the approximation error of compressing the gradients. To185

investigate the effect of r on the bound of error, we report the values of the186

bound for different values of r on 10-split CIFAR-100 in Table 2, where we187

set w = w∗
10 and w∗

i = w∗
1. As shown in Table 2, we observe that the value of188

e1 is dominant and the values of e2 remain stable across different choices of r.189
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Table 2: The effect of r on the bound of relative approximation error in 10-split CIFAR-
100.

The number of stored
top singular values e1 e2 α in e2 ∥(w∗

10 − w∗
1)∥22α2 in e2

r = 1 0.32 8.9× 10−5 4.9× 10−3 1.3× 10−3

r = 2 0.32 3.7× 10−5 6.2× 10−3 7.1× 10−4

r = 3 0.32 1.2× 10−5 4.6× 10−3 2.8× 10−4

r = 4 0.32 1.8× 10−5 6.7× 10−3 5.3× 10−4

r = 5 0.32 1.4× 10−5 8.0× 10−3 5.2× 10−4

r = 6 0.32 8.0× 10−6 6.8× 10−3 3.5× 10−4

r = 7 0.32 8.3× 10−6 8.1× 10−3 4.5× 10−4

r = 8 0.32 9.1× 10−6 9.5× 10−3 6.0× 10−4

This finding is consistent with our observation that the network performance190

is robust to the changes of r, as demonstrated in Figure 4 of the paper.191
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