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APPENDIX A
PROOF OF THE VARIATIONAL LOWER BOUND

In this Appendix, we prove the inequality (1) in Sec. 3.1.1,
explaining the reason why H(ti) + Eti,si [log q(ti|si)] is the
variational lower bound of mutual information I(ti; si).

I(ti; si) = H(ti)−H(ti|si)
= H(ti) + Eti,si [log p(ti|si)]
= H(ti) + Eti,si [log p(ti|si)]
− Eti,si [log q(ti|si)] + Eti,si [log q(ti|si)]

= H(ti) + Eti,si [log q(ti|si)]
+ Esi [DKL(p(ti|si)||q(ti|si))]

≥ H(ti) + Eti,si [log q(ti|si)], (1)

where DKL(·, ·) is Kullback-Leiber divergence. The last
inequality holds due to the non-negativity of DKL(·, ·).

APPENDIX B
DETAILS ON COMPRESSING GRADIENTS OF BN
AND FULLY CONNECTED LAYERS

For the batch normalization (BN) layer with n feature chan-
nels, each channel is equipped with an affine transformation
with two parameters, i.e., scaling weight and bias. There-
fore, the gradients of scaling weight and bias in BN layer
are both with the size of n × C , where C is the number of
classes. We respectively compress the gradients of scaling
weight and bias by SVD without using average operation.

For the fully connected layer, we compress its gradients
by SVD without average operation. Specifically, the gradi-
ents of the fully connected layer are of size nout × nin × C ,
where nout (nin) is the output (input) dimension of a fully
connected layer and C is the number of classes. The gradi-
ents can be regarded as nout matrices with size nin ×C . We
apply SVD on each matrix of size nin ×C and obtain corre-
sponding SVD decomposition (i.e., singular values with size
r, left singular vectors with size nin × r and right singular
vectors with size C × r, r ≪ C).

APPENDIX C
IMPLEMENTATION DETAILS

In this Appendix, we provide the setting of hyperparam-
eters of VDFD in all experiments. For all experiments, we

only save the largest singular value and corresponding sin-
gular vectors in the compression phase, i.e., r = 1. Besides,
we adopt a two layers GCN, i.e., M = 2.

C.1 Continual Learning for Image Classification
Task-incremental setting. We use Adam optimizer in task-
incremental setting. The settings of hyperparameters are
shown in Table 1, where “10-CIFAR”, “20-CIFAR”, “25-
Tiny”, “10-Sub” and “Five” denote 10-split CIFAR-100, 20-
split CIFAR-100, 25-split TinyImageNet, 10-split SubIma-
geNet and 5-Datasets respectively. The network is trained
30 epochs in total for 5-Datasets and 80 epochs for others.
The initial learning rate reduces with a multiplier of 0.5 at
epoch 15 and 20 for 5-Datasets and reduces with the same
multiplier at epoch 30 and 60 for others.

TABLE 1
Hyperparameters of our VDFD in task-incremental setting. “10-CIFAR”,
“20-CIFAR”, “25-Tiny”, “10-Sub” and “Five” denote 10-split CIFAR-100,
20-split CIFAR-100, 25-split TinyImageNet, 10-split SubImageNet and

5-Datasets respectively.

Dataset Learning Learning rate Weight Batch
λrate of GCN decay size

10-CIFAR 1× 10−4 5× 10−4 5× 10−4 32 5
20-CIFAR 1× 10−4 7× 10−4 5× 10−4 32 5
25-Tiny 5× 10−5 5× 10−4 1× 10−5 16 200
10-Sub 1× 10−4 1× 10−4 1× 10−5 16 150
Five 5× 10−4 5× 10−4 5× 10−5 16 80

Class-incremental setting. For all experiments in class-
incremental setting, we use Adam optimizer and train the
network for 100 epochs. The learning rates of the network
and GCN start from 1×10−4 and decay 0.5 at epoch 50. The
batch size and weight decay are set to 16 and 7× 10−4. We
set the hyperparameter balancing the plasticity and stability
across all seen tasks to λ = 50 for CIFAR-100 and λ = 100
for TinyImageNet respectively.

C.2 Continual Learning for Semantic Segmentation
We use SGD optimizer with momentum of 0.9 for all com-
petitors in all experiments. The network is trained for 50
epochs and the batch size is set to 24. We train the network
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with an initial learning rate of 0.02 for the first task and
0.001 for the subsequent tasks. We set the initial learning
rate of GCN to 0.001. The learning rates of the network
and GCN are adjusted by the polynomial learning rate
decay scheduler. We set the hyperparameter balancing the
plasticity and stability across all seen tasks to λ = 10.
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Fig. 1. The curves of ACC and BWT values w.r.t. the number of tasks on
10-split CIFAR-100 and 25-split TinyImageNet by different methods.

APPENDIX D
COMPARISON ON ACC AND BWT VALUES

In this Appendix, we show ACC and BWT values of com-
pared methods in the whole task sequence.

10-split CIFAR-100. Comparative results of 10-split
CIFAR-100 are visualized in Fig. 1(a). As shown in the left of
Fig. 1(a), VDFD achieves the best ACC consistently with the
coming of new tasks. Though achieving better BWT values,
GEM achieves worse ACC values than ours in the whole
sequence as illustrated in the left of Fig. 1(a). Addition-
ally, Adam-NSCL, OWM and BLIP show comparable BWT
values according to the right of Fig. 1(a), but they fail to
achieve similar ACC as ours, which is illustrated in the left
of Fig. 1(a).

25-split TinyImageNet. Comparative results of 25-split
TinyImageNet are shown in Fig. 1(b). As suggested by
Fig. 1(b), VDFD achieves better performance than compared
methods considering both ACC and BWT values. Though
Deepinv, GD and ABD perform marginally better on ACC in
the beginning, their ACC and BWT values degrade dramati-
cally when the number of tasks grows larger. Therefore, they
forget more, which implicitly indicates that synthesized data
or coreset of previous tasks may hurt the network stability.

APPENDIX E
EFFECT OF DIFFERENT SAMPLING STRATEGIES ON
DISTILLATION-BASED METHODS

In this Appendix, we discuss the effect of different sam-
pling strategies on two compared distillation-based meth-
ods, GD [1] and iCaRL [2], which require storing a coreset
containing training data of previous tasks. Overall, GD
with herding sampling and iCaRL with herding sampling
achieve the best ACC and BWT values among all sampling
strategies. However, they still fail to achieve as good perfor-
mance as our VDFD.

GD employs a newly proposed distillation with the
saved coreset as input. iCaRL uses the coreset to compute
the prototypes of old classes which are further utilized
for classification. The saved coreset is also used for dis-
tillation in iCaRL. We utilize the sampling strategies pro-
posed in [3] and [4] to select training samples of previous
tasks to be saved, including random sampling, herding
sampling, reservoir sampling, entropy-based sampling and
plane distance-based sampling strategies.

Specifically, in the random sampling strategy, training
data of previous tasks are selected randomly. In the herd-
ing sampling strategy, the samples are selected when their
feature representations are closer to one of the prototypes
of all seen classes. The prototype of a class is computed
by averaging all the feature vectors of the corresponding
class. In the reservoir sampling strategy, each training data
is sampled from an unknown size data stream with a certain
probability in a single pass manner, where the probability
equals k

n with k as the size of coreset and n as the number
of observed data. In the entropy-based sampling strategy,
the samples with higher entropy of the output softmax
distribution are selected, which measures the uncertainty
of a sample. In the plane distance-based sampling strategy,
the samples closer to the decision boundary are selected.
The distance d(xi) between a sample xi with label yi and
the decision boundary is measured by d(xi) = ϕ(xi)

⊤wyi ,
where ϕ(·) is the learned feature extractor and wyi is the
parameter of the last fully connected layer of class yi.

TABLE 2
The comparisons of ACC and BWT values by GD and iCaRL with

different sampling strategies on 20 split CIFAR-100.

Sampling strategy Metrics GD iCaRL

Random ACC (%) 78.16 74.40
BWT (%) -14.39 -6.83

Herding ACC (%) 79.06 75.75
BWT (%) -13.20 -6.08

Reservoir ACC (%) 78.97 74.78
BWT (%) -13.41 -7.22

Entropy ACC (%) 75.97 58.04
BWT (%) -16.31 -5.42

Plane
distance

ACC (%) 76.16 49.82
BWT (%) -16.05 -2.81

The experimental results of iCaRL and GD using differ-
ent sampling strategies on 20-split CIFAR-100 are shown
in Table 2. According to Table 2, GD and iCaRL with
different sampling strategies show diverse performance,
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suggesting that a proper sampling strategy is helpful to
improve performance. Among GD with different sampling
strategies, herding sampling obtains the best ACC and BWT
values. GD with reservoir sampling achieves the second best
ACC and BWT values, which is marginally higher than GD
with random sampling. GD with entropy-based sampling
and GD with plane distance-based sampling perform worse
than GD with other sampling strategies in this experiment,
indicating that selecting the boundary samples may lessen
the ability of distillation. As for iCaRL, using herding sam-
pling is also the best choice, since it achieves the highest
ACC value and comparable BWT value among all sampling
strategies. iCaRL with reservoir sampling and iCaRL with
random sampling obtain nearly similar ACC and BWT
values. However, iCaRL with entropy-based sampling and
iCaRL with plane distance-based sampling perform much
worse than iCaRL with other sampling strategies. It suggests
that using boundary samples as prototypes for classification
may lower the performance of the network. It is worth
mentioning that our VDFD (w/o SSL) achieves ACC value
of 80.97% and BWT value of -4.79%, and our VDFD achieves
ACC value of 85.84% and BWT value of -1.53% in this
experiment.

APPENDIX F
COMPARISON WITH ARCHITECTURE-BASED METH-
ODS

In this Appendix, we compare our method with several
architecture-based methods including RPSNet [5], DER [6]
and DyTox [7]. Since we focus on the setting where the
training data of previous tasks are unavailable, we further
consider their variants which do not replay previous data.
The variants that do not replay previous data are denoted
as w/o replay.

Comparison with RPSNet. To mitigate catastrophic for-
getting, RPSNet progressively expands the network and
leverages replayed data as well as knowledge distillation.
Comparative results on CIFAR-100 are shown in Fig. 2,
where the results of RPSNet are from its original paper. Ac-
cording to Fig. 2, our VDFD and VDFD (w/o SSL) perform
better than RPSNet w/o replay but worse than RPSNet.
However, RPSNet dynamically expands the network with
the coming of new tasks, which has 72.26× 106 parameters
at the end of the task sequence. While our method adopts
ResNet-18 as the backbone with 11.2 × 106 parameters.
Besides, it can be seen that the performance of RPSNet
heavily relies on the replayed data, which restricts it from
directly applying to the setting where the training data of
previous tasks are inaccessible.

Comparison with DER. When learning a new training
task, DER adds a new learnable feature extractor for its net-
work architecture and freezes the previously learned feature
extractors, which attempt to integrate new knowledge and
retain learned knowledge. Besides, it introduces channel-
level masks to prune the network and replays previous data.
Since the pruning strategy utilized in DER is not published
in their official implementation1, we further compare its
variant without pruning and replay, which is denoted as

1. https://github.com/Rhyssiyan/DER-ClassIL.pytorch

DER w/o P&replay. Comparative results on CIFAR-100 are
shown in Fig. 2, where the results of DER and DER w/o
P are from its original paper. As shown in Fig. 2, our
VDFD and VDFD (w/o SSL) perform better than DER w/o
P&replay, which shows the superiority of our method in
the setting where the training data of previous tasks are
inaccessible. Though DER and DER w/o P perform better
than VDFD and VDFD (w/o SSL), they adopt a dynamically
expanding network with ResNet-18 as the basic network.
While our method adopts ResNet-18 as the backbone with
11.2 × 106 parameters. After learning 10 tasks on CIFAR-
100, the network utilized in DER w/o P has 112.27 × 106

parameters. The number of network parameters of DER at
the end of task sequence is not available, since DER reports
the average number of parameters over all tasks, which is
lower than the number of network parameters at the end of
task sequence.
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Fig. 2. The comparisons of accuracies after learning each task on
CIFAR-100. All of the methods that outperform our VDFD and VDFD
(w/o SSL) rely on replaying the training data from previous tasks. When
these methods do not replay previous data, their performance is lower
than ours.

Comparison with DyTox. The authors of DyTox propose
a transformer architecture with dynamic expansion of task
tokens. Meanwhile, DyTox adopts knowledge distillation,
rehearsal and an auxiliary classifier to mitigate catastrophic
forgetting. Besides, its improved version DyTox+ addition-
ally adopts MixUp [10] strategy which utilizes new samples
obtained by linearly interpolating existing samples. We fur-
ther compare our method with various variants of DyTox,
since we empirically find that some techniques utilized in
DyTox produce a negative effect on performance when it
does not replay previous data. We provide a brief introduc-
tion of the variants in the following.

• w/o div: it means that removing the divergence loss
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Fig. 3. Visualization of predictions of PLOP [8], RCIL [9] and VDFD after learning tasks T1, T6, T11, T16 and T21 in the setting “1-1” of Cityscapes.

Ldiv in Eq. (9) of the paper of DyTox2. The divergence
loss is computed on the auxiliary classifier which
predicts the probabilities of the current task classes
and an extra class representing all previous classes.

• w/o auto-kd: we set the coefficients of classification
loss Lclf and distillation loss Lkd as 1 and 50, rather
than automatically determining the coefficient (i.e.,
α in Eq. (9) of the paper of DyTox) according to the
number of seen classes.

Comparative results on CIFAR-100 are shown in Fig. 4,
where the results of DyTox, DyTox+ are from its original
paper. According to Fig. 4, our VDFD and VDFD w/o SSL
perform better than all variants of DyTox without replay
but worse than DyTox, DyTox+. It indicates that when the
training data of previous tasks are inaccessible, our method
is preferred. Furthermore, the performance of DyTox and
DyTox+ is heavily dependent on the replayed data.

Among the variants of DyTox without replay, DyTox
w/o div&replay (DyTox+ w/o div&replay) performs better
than DyTox w/o replay (DyTox+ w/o replay). It shows that
the divergence loss fails to improve performance when the
training data of previous tasks are not available. DyTox w/o
div&auto-kd&replay (DyTox+ w/o div&auto-kd&replay)
performs better than DyTox w/o div&replay (DyTox+ w/o
div&replay). It indicates that increasing the strength of dis-
tillation loss is reasonable when replaying previous data is
not allowed. We report the results of DyTox w/o div&auto-
kd&replay and DyTox+ w/o div&auto-kd&replay in Fig. 5
of the manuscript, they obtain the highest results.

2. Eq. (9): L = (1−α)Lclf +αLkd +λLdiv , where Lclf and Lkd are
classification loss and distillation loss, α and λ are hyperparameters.
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Fig. 4. The comparisons of accuracies after learning each task on
CIFAR-100. All of the methods that outperform our VDFD and VDFD
(w/o SSL) rely on replaying the training data from previous tasks. When
these methods do not replay previous data, their performance is lower
than ours.

APPENDIX G
VISUALIZATION ON CONTINUAL SEMANTIC SEG-
MENTATION

We visualize the predictions of PLOP [8], RCIL [9] and our
VDFD on the setting “1-1” of Cityscapes in Fig. 3, where
the predictions are obtained after learning tasks T1, T6, T11,
T16 and T21. According to Fig. 3, the segmentation map
obtained by our VDFD does not dramatically change with
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the increase of the number of learned tasks, which indicates
that our VDFD well retains the stability of the network.
Compared to PLOP and RCIL, our VDFD generates the
segmentation with more details at the last task T21 (e.g.,
person and pole).

APPENDIX H
VDFD WITH DIFFERENTIAL PRIVACY TECHNIQUE

In this Appendix, we further introduce the technique of dif-
ferential privacy to our method for lessening the risk of pri-
vacy leakage of gradients. Overall, VDFD with differential
privacy technique achieves marginally lower performance
than VDFD when applying a small noise level.

Differential privacy [11], [12] is a standard definition for
privacy guarantee. Intuitively, it guarantees that a random-
ized algorithm behaves similarly on adjacent input datasets.
In our experiments, each training dataset consists of image-
label pairs. We say that two datasets are adjacent if one
image-label pair is present in one dataset and absent in
the other dataset. The definition of differential privacy is
described in the following.

Definition 1 (Differential Privacy [12]). A randomized mech-
anism M with domain D is (ϵ, δ)-differential privacy if for all
S ⊆ Range(M) and for any two adjacent inputs d, d′ ∈ D:

Pr[M(d) ∈ S] ≤ exp(ϵ)Pr[M(d′) ∈ S] + δ,

where Pr[·] denotes the probability.

A common paradigm to ensure a deterministic function
q with differential privacy guarantee is adding noise to the
output of q. For instance, Gaussian mechanism [12] in the
following Definition 2.

Definition 2 (Gaussian mechanism [12]). Given a determin-
istic function q with domain D, Gaussian mechanism is defined
as:

M(d) = q(d) + n,

where n is a random variable drawn from Gaussian distribution
N (0, σ2).

It can be proved that Gaussian mechanism is (ϵ, δ)-
differential privacy [12, Theorem 3.22]. To prevent leakages
of gradient information in our method, we employ Gaussian
mechanism on the query function q that inputs the training
data and returns the corresponding gradients of network
parameters. Once we obtain the output gradients using
Gaussian mechanism, we apply the proposed compression
method described in Sec. 3.1.3 of the paper on the gradients.
In our experiments, the noise of Gaussian mechanism is
drawn from N (0, sσ2), which is simultaneously calibrated
by the noise level s and the variance of gradients σ2. The
variance of gradients σ2 ∈ R|w|×C is estimated on the whole
training dataset, where |w| and C denote the dimension of
network parameters and the number of classes respectively.
This ensures that the noise is adaptively calibrated by the
scale of the gradients.

The comparisons of ACC and BWT values on 10-split
CIFAR-100 and 25-split TinyImageNet with different noise
levels are shown in Table 3. As shown in Table 3, the ACC
values decrease with the increase of noise levels. The BWT

values with adding noise are lower than the BWT value
without adding noise.

TABLE 3
The comparisons of ACC and BWT values on 10-split CIFAR-100 and
25-split TinyImageNet with different noise levels s. Values in bold and

underlined are respectively the best and the second best results.

Noise
level

10-split CIFAR-100 25-split TinyImageNet

ACC (%) BWT(%) ACC(%) BWT(%)

s = 0 79.23 -2.93 60.58 -4.60
s = 0.001 79.12 -3.55 60.49 -4.80
s = 0.01 78.88 -3.52 60.24 -5.01
s = 0.1 78.68 -3.94 60.08 -5.06
s = 0.2 78.27 -3.50 59.20 -5.93
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